The Reaction of 2,4,5,6-Tetraaminopyrimidine with Chalcones

Braulio Insuasty*, Alfredo Pérez, Diego González and Jairo Quiroga

Universidad del Valle, Department of Chemistry, A.A. 25360, Cali, Columbia

Herbert Meier

Universität Mainz, Institut für Organische Chemie, 55099 Mainz, Germany Received August 10, 1999

The reaction of the tetraaminopyrimidine 1 with the chalcones 2a-f yields, in the presence of catalytic amounts of acetic acid, the 1*H*-pyrimido[4,5-*b*][1,4]diazepine derivatives 3a-f. The cyclization process consists of a condensation reaction and a Michael type addition.

J. Heterocyclic Chem., 37, 193 (2000).

The reaction between aromatic or heteroaromatic 1,2-diamines and chalcones (1,3-diaryl-2-propenones) is a convenient and versatile method for the preparation of condensed 1,4-diazepines [1 - 7]. Alternatively two equivalents of functionalized acetophenones can enter with 1,2-diamine cyclization reactions [3,5,8].

In the present paper, we report on the preparation of 2,4-diamino-6,8-diaryl-7,8-dihydro-9*H*-pyrimido[4,5-*b*]-[1,4]diazepines (3), compounds for which interesting biological and pharmacological properties can be expected [9,10]. Heating of 2,4,5,6-tetraaminopyrimidine (1) with molar quantities of chalcones 2a-f in the presence of catalytic amounts of acetic acid generates the desired products 3a-f in good yields.

The tetraamine 1 contains three types of non-equivalent amino groups. Due to the electronic effect of the pyrimidine ring, the amino group on C-5 has the highest nucleophilicity [11-14]. Its condensation reaction with the carbonyl group of 2a-f can be followed by a Michael type addition of one of the two equivalent amino groups on C-4 and C-6. Electron withdrawing substituents R enhance the reactivity whereas electron releasing substituents R decrease it. The spectroscopic characterization of the products reveals a regioselective ring closure.

The ¹H nmr data of **3a-f** are summarized in Table 1. The four protons on the 1,4-diazepine ring give rise to an ABMX spin system. The coupling of the proton on N-9 with ${}^3J = (4.9 \pm 0.3)$ Hz indicates the vicinal position to the proton on C-8. The latter shows two couplings (${}^3J = (6.0 \pm 0.2)$ Hz and ${}^3J = (1.2 \pm 0.2)$ Hz) to the methylene group H₂C-7. The geminal coupling constant 2J amounts to $-(14.7 \pm 0.1)$ Hz.

The 13 C-nmr data of **3a-f** are summarized in Table 2; the correlation of the δ values with certain carbon atoms is based on DEPT measurements. The chemical shift of

C-4a ($\delta = 101.4 \pm 0.6$) is characteristic for the electron releasing effects of N-9 and 4-NH₂. Moreover, measurements of the single frequency decoupling by irradiation of the proton signal corresponding to HN-9 reveal the 3J coupling with C-4a.

EXPERIMENTAL

Melting points were taken on a Büchi melting point apparatus and are uncorrected. The ¹H and ¹³C nmr spectra were run on Bruker AM 400 and AC 200 spectrometers in DMSO-d₆. The mass spectra were recorded on a Finnigan M 95 operating at 70 eV.

Table 1 ^{1}H nmr Data of **3a-f** (δ values measured in DMSO-d $_{6}$ versus tetramethylsilane as internal standard, 400 MHz)

3	9-H	8-H	7-H	NH_2	2-C ₆ H ₅	$4-C_6H_4-R$	others
a	7.34	5.17	2.97/3.87	6.52/6.04	7.16 - 7.38	7.16 - 7.77	
b	7.32	5.18	2.90/3.90	6.55/6.08	7.18 - 7.30	7.31 - 7.80	
c	7.39	5.21	2.87/4.03	6.45/5.94	7.19 - 7.29	7.96 - 8.15	
d	7.04	5.15	2.88/3.87	6.21/5.73	7.12 - 7.30	7.12 - 7.58	2.34 (CH ₃)
e	7.30	5.18	2.89/3.88	6.50/6.01	7.18 - 7.32	7.48 - 7.68	
f	6.94	5.04	2.78/3.74	6.16/5.68	7.07 - 7.24	6.74 - 7.50	3.72 (OCH ₃)

Table 2

13 C nmr Data of 3a-f (δ values measured in DMSO-d₆ versus tetramethylsilane as internal standard,100 MHz)

Compound	3a	b	c	d	e	f
HC-8	57.2	57.2	57.0	57.6	57.4	57.3
H ₂ C-7	39.0	38.8	38.7	38.7	38.8	38.5
C-6	159.4	159.4	161.2	160.5	160.0	160.0*
C-4a	100.8	101.2	102.0	101.5	101.3	101.2
C-4, C-9a	154.4	153.4	150.7	154.3	153.1	154.2
	154.8	154.5	155.3	154.9	154.7	154.4
C-2	163.2	163.0	164.3	163.8	163.5	163.5
Ar						
C_{i}	140.8	139.7	144.0	137.5	140.1	133.8
	144.0	144.0	146.9*	138.5	144.0	144.2
$HC_{o,m}$	125.8	126.8	123.2	126.0	125.9	112.6
	126.0	127.8	125.8	126.1	128.1	125.9
	127.6	128.0	127.0	128.1	128.2	127.8
	127.8	128.0	128.0	128.6	130.8	128.0
C_{p}	126.8	126.8	126.8	126.7	121.6	126.8
•	128.0	132.8	146.4*	144.3	126.8	159.4*
others				23.6 (CH	3)	55.0 (OCH ₃)

^{*}signal correlation interchangeable

2,4-Diamino-7,8-dihydro-6,8-diaryl-9H-pyrimido[4,5-b][1,4]-diazepines (3a-f).

General Procedure

A solution of 0.45 g (3.2 mmoles) of 2,4,5,6-tetraaminopyrimidine (1) and 3.2 mmoles 1,3-diaryl-2-propenone (chalcone) **2** in 15 ml of dry ethanol and 1 ml acetic acid was refluxed for 4 hours. The reaction mixture was neutralized with ammonia and cooled to 0°C. The precipitate that formed overnight was filtered off and recrystallized from methanol.

2,4-Diamino-7,8-dihydro-6,8-diphenyl-9*H*-pyrimido[4,5-*b*][1,4]-diazepine (**3a**).

The compound was obtained in a yield of 44%. The ms spectrum showed peaks at m/z (%) 330 (100, M+ $^{\bullet}$), 315 (29), 253 (17, M+ $^{\bullet}$ - C₆H₅), 226 (63), 104 (11), 103 (10).

Anal. Calcd. for C₁₉H₁₈N₆: C, 69.07; H, 5.49; N, 25.44. Found: C, 69.26; H, 5.46; N, 25.13.

2,4-Diamino-6-(4-chlorophenyl)-7,8-dihydro-8-phenyl-9*H*-pyrimido[4,5-*b*][1,4]diazepine (**3b**).

The compound was obtained in a yield of 62%. Its ms spectrum showed peaks at m/z (%) 366/364 (17, M+*, Cl isotope pattern), 351/349 (23) 262/260 (100), 77 (18), 68 (20).

Anal. Calcd. for $C_{19}H_{17}CIN_6$: C, 62.55; H, 4.70; N, 23.03. Found: C, 62.41; H, 4.92; N, 23.26.

2,4-Diamino-7,8-dihydro-6-(4-nitrophenyl)-8-phenyl-9*H*-pyrimido[4,5-*b*][1,4]diazepine (**3c**).

The compound was obtained in a yield of 81%. Its ms spectrum showed peaks at m/z (%) 375 (100, M+ *), 360 (25), 298 (14, M+ * - C₆H₅), 271 (100), 253 (19), 227 (20), 225 (27), 104 (39), 102 (22), 77 (24).

Anal. Calcd. for $C_{19}H_{17}N_7O_2$: C, 60.79; H, 4.56; N, 26.12. Found: C, 60.50; H, 4.78; N, 26.18.

2,4-Diamino-7,8-dihydro-6-(4-methylphenyl)-8-phenyl-9*H*-pyrimido[4,5-*b*][1,4]diazepine (**3d**).

The compound was obtained in a yield of 46%. Its ms spectrum showed peaks at m/z (%) 344 (42, M+*), 329 (42), 267 (16, M+* $- C_6H_5$) 253 (29), 240 (100), 227 (17), 91 (16), 77 (17), 68 (13).

Anal. Calcd. for $C_{20}H_{20}N_6$: C, 69.75; H, 5.85; N, 24.40. Found: C, 69.56; H, 5.86; N, 24.20.

2,4-Diamino-6-(4-bromophenyl)-7,8-dihydro-8-phenyl-9*H*-pyrimido[4,5-*b*][1,4]diazepine (**3e**).

The compound was obtained in a yield of 76%. Its ms spectrum contained peaks at m/z (%) 410/408 (75, M+*, Br isotope pattern), 395/393 (22), 333/331 (6, M+* - C_6H_5), 306/304 (70), 253 (21), 227 (31), 183 (21), 151 (16), 124 (31), 104 (62), 102 (67), 77 (36), 43 (100).

Anal. Calcd. for $C_{19}H_{17}BrN_6$: C, 55.76; H, 4.19; N, 20.53. Found: C, 55.77; H, 3.99; N, 20.36.

2,4-Diamino-7,8-dihydro-6-(4-methoxyphenyl)-8-phenyl-9*H*-pyrimido[4,5-*b*][1,4]diazepine (3**f**).

The compound was obtained in a yield of 48%. Its ms spectrum contained peaks at m/z (%) 360 (100, M^{+*}), 345 (38), 283 (5, M^{+*} - C_6H_5), 256 (24), 242 (5), 133 (7).

Anal. Calcd. for $C_{20}H_{20}N_6O$: C, 66.65; H, 5.59; N, 23.32. Found: C, 66.56; H, 5.74; N, 23.18.

Acknowledgement.

We are grateful to COLCIENCIAS and to the Fonds der Chemischen Industrie for financial support.

REFERENCES AND NOTES

- [1] A. Nawojski and W. Nawrocka, *Rocz. Chem.*, **51**, 2117 (1977); *Chem. Abstr.*, **88**, 136578u (1978).
- [2] F. G. Yaremenko, V. D. Orlov, N. N. Kolos and F. Lavrushin, *Khim. Geterotsikl. Soedin.*, 848 (1979).
- [3] V. D. Orlov, J. Quiroga and N. N. Kolos, Khim. Geterotsikl. Soedin., 363 (1987).
- [4] B. Insuasty, R. Abonía and J. Quiroga, An. Quim., 88, 718 (1992).
- [5] V. D. Orlov, N. N. Kolos, J. Quiroga, Z. Kaluski, E. Figas and A. Potekhin, *Khim. Geterotsikl. Soedin.*, 506 (1992).
- [6] B. Insuasty, M. Ramos, J. Quiroga, A. Sánchez, M. Nogueras, N. Hanold and H. Meier, *J. Heterocyclic Chem.*, **31**, 61 (1994).
- [7] B. Insuasty, M. Ramos, R. Moreno, J. Quiroga, A. Sánchez, M. Nogueras, N. Hanold and H. Meier, *J. Heterocyclic Chem.*, **32**, 1229 (1995).
- [8] B. Insuasty, R. Abonía, J. Quiroga and H. Meier, J. Heterocyclic Chem., 30, 229 (1993).
- [9] J. T. Sharp in Comprehensive Heterocyclic Chemistry, (A. R. Katritzky, C. W. Rees and W. Lwowski, eds.), Vol. 1, p. 593, 1984 and references therein.
- [10] A. Chimirri, R. Gitto, S. Grasso, A. M. Monforte, G. Romero and M. Zappala, *Heterocycles*, 36, 601 (1993) and references therein.
- [11] L. A. Yanovskaya, G. V. Kryshtal and V. V. Kulganek, Usp. Khim., 53, 1280 (1984).
- [12] V. D. Orlov, I. Z. Papiashvili and P. A. Grigorov, Khim. Geterotsikl. Soedin., 671, (1983).
 - [13] E. S. Petrov, Usp. Khim., 52, 1974, (1983).
- [14] E. Bosch, J. Guiteras, A. Izquierdo and M. D. Prat, Anal. Letters, 21, 1273 (1988).